Walking and the Brain, Aromatherapy for Horses and a Whole Lot More!

Physiology, the study of function from microscopic cells to complete organ systems, encompasses a wide range of fascinating topics. The annual Experimental Biology (EB) meeting is a showcase for thousands of researchers studying humans and animals alike. Check out some of the research presented at last month’s meeting in Chicago:

Close up shot of runner's shoes

Credit: iStock

Most people know that walking is good for heart health, weight management and flexibility. New research from New Mexico Highlands University reveals how your brain also benefits from walking. Each step you take sends pressure waves through your arteries and increases blood flow—and oxygen—to the brain. The researchers found that running also had a beneficial effect on blood flow, while sports like cycling that don’t involve foot impact were less likely to make a significant difference.

Dressage test

Credit: iStock

Do you like the calming scent of lavender when the pressure’s turned up? Turns out, you’re not alone. Research out of Albion College studied the effects of aromatherapy on horses. Much like people, competition horses get stressed out when they’re transported from their home to an unfamiliar venue. Stress reduction therapies are highly regulated in competition horses, and non-medicinal treatments could go a long way to calm the animals before they perform. The researcher found that stress hormone levels dropped significantly among trailered horses that were exposed to lavender aromatherapy when compared to distilled water mist.

Two women rowing on a lake

Credit: iStock

Olympic-caliber athletes appear to be the picture of strength and power. But new research suggests that high-intensity workouts without a proper recovery period could interfere with optimum bone health. A study of female Olympic rowers from Canada’s Brock University showed that the levels of a protein that stops bone mineral loss dropped during extended periods of heavy training. Bone mineral loss weakens the bones and increases the risk of stress fractures and osteoporosis.

These studies just scratched the surface of all the top-notch physiology research presented at EB. Read more highlights from this year’s meeting:

Why vitamin A and a high-fat diet don’t mix

The role of immune cells in the cause—and treatment of—preeclampsia

How an ice bag on the face can help treat severe blood loss

An “exercise pill” may be in our future

How orange essential oil reduces PTSD symptoms

 

Erica Roth

What Alcohol Can Do to Your Body Is Not Always So “Cheer”y

Alcoholic Beverages

Credit: iStock

“Cheers!” is a word often associated with alcohol consumption, conjuring up images of celebration and good times. However, it is important to remember that alcohol is a drug as much as any other drug, prescription or otherwise. In fact, alcohol is the most widely abused drug in the U.S. Alcohol misuse affects every organ in the body and has both long- and short-term consequences.

Drinking too much alcohol on a regular basis most significantly affects the liver, a major organ responsible for processing many substances in our bodies. The liver eliminates alcohol from the body through a series of steps using substances called enzymes. Enzymes break down alcohol into other materials called metabolites that the body can more easily handle (or get rid of). Some metabolites produced in the breakdown of alcohol are toxic. Excessive, long-term exposure to these toxic chemicals can lead to inflammation, liver tissue damage and even cancer.

Long-term effects of alcohol can cause several types of liver disease, including:

  • Alcoholic fatty liver disease. It’s one of the earliest stages of liver disease. Too much alcohol can cause fat deposits to form in the liver. Abstaining from alcohol can reverse the damage from alcoholic fatty liver disease.
  • Alcoholic hepatitis. In addition to fatty deposits, this disorder also causes scarring of the liver and impairs liver function. Mild cases may be reversible, but severe cases can lead to liver failure.
  • Alcoholic cirrhosis. The most serious of alcohol-related liver injuries, alcoholic cirrhosis leads to hard scar tissue that replaces healthy liver tissue, causing extreme damage to the organ. Severe liver impairment can lead to significant problems with overall health and nutrition, gastrointestinal bleeding and even death. Abstinence can’t reverse cirrhosis, but staying away from alcohol may prevent further damage and improve symptoms. Cirrhosis symptoms may also be managed with medications and medical treatment. However, some patients may need a liver transplant to improve their health.

Alcohol affects brain function, too. A recent study showed that even short-term exposure to alcohol decreases the brain’s ability to get enough glucose, an important nutrient. Abstinence from alcohol can help the brain recover, but healing isn’t immediate.

It’s not all bad news, though! Research suggests that moderate consumption—defined as one drink per day for women and two per day for men—especially of red wine, can benefit cardiovascular health in adults. However, moderation is key, and any drinking in people younger than 21 is considered detrimental to health and development.

April is Alcohol Awareness Month. If you suspect that you or someone you know has a drinking problem, the National Drug and Alcohol Treatment Referral Routing Service can provide information and resources (800-662-HELP).

 

audrey-vasauskasAudrey A. Vasauskas, PhD, is an assistant professor of physiology at the Alabama College of Osteopathic Medicine.

When’s the Best Time to Eat? Your Body Clock Knows

Two teenager girls, sisters, eats fastfood on the street

Credit: iStock

The American Heart Association recently released a statement suggesting that when and how often you eat could affect your risk for developing heart disease and stroke. Until now, the focus on diet has been primarily about how much and what you eat. This news—that the time of day you eat may also be important—could change the way people are able to manage their health.

Our bodies have natural daily patterns called circadian rhythms that occur roughly over a 24-hour cycle. Many biological processes are driven by circadian rhythms, including when you go to sleep and wake up, your body temperature, heart rate, blood pressure and the release of various hormones. A “master clock,” a tiny group of cells called the suprachiasmatic nucleus (SCN), located in the hypothalamus area of the brain manages circadian rhythms. This master clock is mostly controlled by changes in light.

Every cell in the body also has its own internal clock called a “peripheral clock.” Peripheral clocks make sure all of the cells’ functions are coordinated with the master clock. Animal studies show us the importance of keeping peripheral clocks in sync with the brain’s master clock. For example, when the peripheral clock in a mouse’s heart is disrupted, the mouse develops heart failure and dies at a much younger age than normal mice.

Unlike the master clock, peripheral clocks are more responsive to the availability of food than changes in light. As a result, eating at the “wrong” time of day could shift the rhythms of the peripheral clocks so they are out of sync with the master clock. For example, shift workers who work in the middle of the night are active when they would normally be asleep and eat at times when their body doesn’t expect food. They are at much greater risk for being overweight, becoming insulin resistant and developing cardiovascular disease because their master and peripheral clocks are likely to be out of sync.

Research in mice has shown that if they consume a high-fat meal at the end of their active period (the equivalent of a high-fat dinner for humans) they gain more weight, develop insulin resistance and have impaired cardiac function compared to mice that eat the same high-fat meal at the beginning of their active phase (breakfast).

Studies in people suggest that eating meals late in the day is linked to negative health effects, but a direct relationship has not been shown. Nevertheless, if when you eat is just as important as what you eat, it might not hurt to eat your larger meals earlier in the day if you can.

 

John Chatham

John Chatham, DPhil, is a professor of pathology and director of the Division of Molecular and Cellular Pathology at the University of Alabama at Birmingham.

Meet Christina McManus, Associate Professor of Physiology

 

Christina McManus

Christina McManus, PhD, teaches physiology at the Alabama College of Osteopathic Medicine.

March is Women’s History Month, a time when women who have challenged—and continue to challenge—traditional roles are celebrated. In the final installment of our series, we introduce you to APS member Christina McManus, PhD, an associate professor of physiology at the Alabama College of Osteopathic Medicine. (Read part one, part two, part three and part four).

What is your title/role?

I am an associate professor of physiology at the Alabama College of Osteopathic Medicine (ACOM).

What is your area of research?

My clinical research includes studying the changes in biomarkers (indicators of the presence of disease) in patients with chronic back pain who receive osteopathic manipulative therapy.

My medical educational research includes hosting a “Women in Science” camp designed to encourage and educate middle and high school girls about science-related careers.  We evaluate the girls’ interest in science careers before and after they attend.

How did you become interested in science? Were there women scientists who influenced you or whom you admired?

I always had an interest in science in middle and high school.  I grew up in a small town and didn’t know any women in science-related careers other than nurses.  When I went to college at the University of South Alabama, I took an honors research class and met some fascinating women researchers.  Being around a group of successful, confident and intelligent women—of diverse ages and backgrounds—made a huge impact on me.

What do you like most about your job?

I like teaching physiology and making a hard concept easy and medically relevant to medical school students. I have a great passion for our outreach programs at ACOM, such as the “Women in Science” camp.  More than 125 girls participate [in the camp]. It brings me much joy to provide them with the experience and exposure that I lacked as a kid.

What are your biggest challenges?

My biggest challenge is always finding a new and exciting way to teach science to kids of all ages and backgrounds.

Women's history month design with multicultural hands

Credit: iStock

What do you see as the main barriers to having more women in STEM?

The biggest barrier in my opinion is that young women may not know anyone in a STEM field, and most of these jobs are held by men. Therefore, they don’t see how a woman can be successful in the sciences.

What would you say to young girls with an interest in science/physiology? How would you encourage them to pursue their studies?

I would encourage them to never limit themselves, and be anyone they want to be.  [They should] reach out to as many women as they can in this field [as mentors].  They will be amazed at the possibilities for women in STEM if they search hard enough.

– Erica Roth

Ida Henrietta Hyde: A Trailblazer in Physiology

 

hyde1

Ida Hyde at Heidelberg University, 1896.

March is Women’s History Month, a time when women who have challenged—and continue to challenge—traditional roles are celebrated. This month, the I Spy Physiology blog will introduce you to several female physiologists, starting with the first female member of APS, Ida Henrietta Hyde.

Ida Henrietta Hyde was born in 1857 in Davenport, Iowa, the daughter of German immigrants. She went to public school and took jobs as a dressmaker and milliner (a person who designs or sells women’s hats) to help support her family. After reading a book about natural science, she became fascinated with biology. This newfound interest in life sciences inspired her to save as much of her salary as possible so that she could go to college someday.

In 1882, Hyde started classes at the University of Illinois at Champaign but was soon forced to withdraw to help care for her sickly brother. During that time, she taught elementary school in Chicago, where she was instrumental in introducing a science curriculum to the Chicago public school system.

By the late 1880s, Hyde was able to return to college and went on to earn a degree in biological sciences from Cornell University in Ithaca, N.Y. She worked in research at the Marine Biological Laboratory at Woods Hole in Massachusetts before traveling to Europe on a fellowship to pursue a PhD—something women were rarely able to do. Hyde’s early work centered on the neurophysiology of vertebrates and invertebrates, but she also conducted research in cardiology. Her article “The Effect of Distention of the Ventricle on the Flow of Blood through the Walls of the Heart” was published in the first issue of the American Journal of Physiology in 1898.

Women's history month design with multicultural hands

Credit: iStock

By 1902, Hyde was back in the U.S. and had become an associate professor of physiology at the University of Kansas. She eventually became head of the department and was nominated for APS membership in 1902. She was the only female member of APS until 1913. Today, APS is proud to count more than 3,100 women as members.

APS membership was just one of Hyde’s many accomplishments as a scientist and physiologist. Her landmark achievements paved the way for many more women who follow in her footsteps. Read more about her in The Physiologist.

Erica Roth

Go Ahead, Wear Your Heart on Your Sleeve!

Jousting Competition

A jousting knight wears his heart on his sleeve. Credit: iStock

In medieval times, a jousting knight would wear the colors of the lady he was courting tied around his arm. Hence, the phrase “Wear your heart on your sleeve” was born. Today, we use this romantic phrase to describe someone who expresses their emotions openly. How applicable that ancient phrase really is to maintaining a healthy heart!

In a landmark paper, a group of scientists discussed how stress and social interactions with others affected the health of the heart. It is well-known that stress is a major factor in the development of heart disease. This is because stress is a double whammy: It activates the “fight-or-flight” nervous response, and it causes inflammation in the cells that line blood vessels. Both of these events can damage blood vessels in the heart.

Research shows that positive social interaction expressing emotion is important for heart health. Support from a spouse or partner, friends or other groups can reduce stress and help you stick to a healthy diet and exercise program to minimize your risks.

Heart disease is the leading cause of death worldwide, with annual deaths creeping up to 24 million. Reducing stress and anxiety is an important aspect of keeping your heart healthy. Exercise, yoga, meditation and even deep breathing can promote a sense of calm when tensions mount. Try running or yoga with a friend or join an exercise class to keep you on track for a healthy heart. Go ahead, wear your heart on your sleeve—it’s good for you!

February is American Heart Month. You can find more information about keeping your ticker ticking on the American Heart Association’s website.

audrey-vasauskasAudrey A. Vasauskas, PhD, is an assistant professor of physiology at the Alabama College of Osteopathic Medicine.

When You Can’t ‘Spy’ with Your Eye Anymore

Senior Male With Macular Degeneration

Credit: iStock

Many of us take our ability to read this blog or see the faces of our families and friends for granted. For the 10–15 million Americans with a disease called age-related macular degeneration (AMD), however, the loss of this ability is a daily and devastating reality. AMD is the most common cause of blindness in people over the age of 60.

There are many causes of visual impairment, including near-sightedness, far-sightedness, infection and diabetes. Some of these can be relatively easily corrected with eyeglasses and other medical tools and procedures. AMD currently has no cure, and we are just beginning to understand its causes.

AMD is a gradual and progressive deterioration of the retina, the light-sensing tissue at the back of the eye. The disease affects the most sensitive portion of the retina called the macula. We use the macula to distinguish fine features and colors, and when we lose this function, it can be devastating. AMD slowly causes the photoreceptors—cells that make up the retina—to die, creating blank spots in the field of vision. This occurs when undigested deposits of molecular debris called drusen accumulate in an area that eventually starves the cells that support the photoreceptors.

Genetics is the main factor that makes you more likely to get AMD. Other causes may include smoking and an unbalanced diet. Avoiding smoking and making healthy dietary choices are good ways to reduce your risk of AMD. A recent study published in the journal Cell Stem Cell found that a substance related to vitamin B3 reduced molecular debris and inflammation related to AMD in patients with the disorder. Fish, meat, peanuts and green vegetables all contain vitamin B3.

As the U.S. population grows older, diseases such as AMD are likely to become more prevalent and have a higher social and economic burden than they did in the past. Researchers are actively working to better understand the causes of the disease and how to treat and prevent it.

February is Age-Related Macular Degeneration and Low Vision Awareness Month. If you haven’t had your eyes checked yet this year, now is a good time to make that appointment.

 

grant-kolarGrant Kolar, MD, PhD, is an assistant research professor of pathology and ophthalmology at Saint Louis University School of Medicine.

Go Ahead and Scratch … Your Brain Is Telling You To

Itchy and dry skin

Credit: iStock

Winter is here, and for much of the country, it’s going to stick around for a while. When exposure to frosty air and the constant hum of the heat pump continue for too long, you may end up with dry, itchy skin. We know that scratching an itch feels good, but why?

Researchers studied brain activity in two groups of volunteers. One group had chronic itching problems, and the other did not. The chronic itch group had more activity in the area of the brain involved with movement than the non-itchy group. This boost in activity means their brains were “wired” to scratch.

The non-itchy volunteers were then treated with an irritant that made their skin itch. The research team found that when the healthy volunteers scratched an itch, the reward center in the brain lit up. In other words, scratching feels good even if you don’t have a chronic skin condition.

Slathering yourself with moisturizer and drinking more water can help hydrate the skin—your largest organ—and keep winter itches at bay. But sometimes you just want relief from a good—yet gentle— scratch. Now you know that your brain is giving you permission to indulge.

Erica Roth

How Your Brain Decides to Keep Your New Year’s Resolutions (or Not)

 

New Year goals or resolutions

Credit: iStock

ispy-physiology-100th-post-imageThe start of a new year can feel like a fresh slate or an unwritten book. It’s a chance for many of us to resolve to do things better (eating, exercising) or to stop doing certain things altogether (smoking). But most people don’t succeed in sticking to their resolutions in the long term, and the reason might surprise you. It’s not always a question of lacking willpower or being lazy. Keeping resolutions makes your brain work hard, and that mental effort takes time and practice.

Researchers from the University of Minnesota found that your brain uses more than one decision-making system to build and regulate habit-forming and goal-directed behaviors. One system looks at the steps you take to make a decision. Another evaluates your actions and decides when you need to change a new behavior in order to receive a reward.

Here’s where the hard work comes in: The researchers explain that goal-directed behavior requires mental energy and planning. You have to plan ahead before making decisions to know how to reach your goal. Let’s say, for example, you’re trying to cut back on sweets and are invited to a party. If you want to enjoy a dessert at the party but don’t want to completely ignore your resolution, you’ll need to plan to eat less sugar during the rest of the day. Over time, as you keep making more goal-oriented decisions, the choices become more automatic.

Another study suggests that nerve cells stick together when you form a habit that you’ve enjoyed (such as eating dessert after dinner). The strong bond they create can be tough to break, and—like getting up early to go running or sticking to that diet—it isn’t always easy. This is especially the case when your emotions take over and you feel resentful or angry at the challenging changes you’re trying to make. Being mindful and keeping your emotions out of the decision-making process can help. Your brain, like your body, just needs time to adjust to your new routines.

Good luck and happy new year.

Erica Roth

Exercise: It does a body—no, your brain—good!

Brain

Credit: iStock

It’s 7:30 a.m., I’m looking for my keys, grabbing my bag and herding everyone out of the door as we hurry off to school and work. Wait! One more trip back into the house for the forgotten homework assignment, a lunchbox and … it seems I have forgotten several things. Is it stress, lack of sleep or just the natural aging process? Regardless, it seems I need a memory-boosting workout.

Exercise is no longer just for affecting the size of your muscles, but also the size of your brain. As we age, the volume of our brain naturally decreases. However, in people at risk for Alzheimer’s disease, one of the numerous cognitive diseases under the dementia umbrella, there is a more marked decrease in brain volume. Being physically active has been shown to slow or even stop the decrease in brain volume in older people, even among those at risk for Alzheimer’s disease.

The Physical Activity Guidelines for Americans issued by the U.S. Department for Health and Human Services state that adults should get 150 minutes of moderate-intensity activity—such as walking, running, swimming and cycling—each week to promote and maintain health. These and other forms of moderate-intensity exercise have also been positively linked to maintenance of memory and learning as we age.

According to a recent study in the research journal Alzheimer’s and Dementia, reaching recommended physical activity goals has substantial effects on brain volume. Ninety-one adults ranging from ages 50 to 74 wore an accelerometer, a device which records and measures the wearer’s steps and speed of movement, for seven days. Subjects who performed physical activity for 150 minutes or more per week had temporal lobe sections that were 5–6 percent larger than their sedentary counterparts. The temporal lobe of the brain is associated with learning and memory. This sustained brain volume associated with physical activity was noted among people with a family history of Alzheimer’s disease, those who have the Alzheimer’s associated gene and those who were not at high risk.

The moral of the story? Get up and move. Your brain will remember to thank you.

 

Jessica Taylor updated 6-1-2016 Jessica C. Taylor, PhD, is an assistant professor of physiology in the College of Osteopathic Medicine at William Carey University in Hattiesburg, Miss.