Desperately Seeking Kidneys: New Future for the Treatment of Chronic Kidney Disease?

renal colic - male adult - kidney disease

Credit: iStock

The kidneys are an important pair of organs responsible for filtering water and waste out of the blood to produce urine. They help regulate blood pressure and produce hormones that the body needs to function properly.

Kidney disease is often considered a silent disease because there are usually no detectable symptoms in the early stages. Fourteen percent of adults in the U.S. suffer from chronic (long-term) kidney disease (CKD). Risk factors that can lead to CKD include diabetes, high blood pressure, aging and family history of kidney failure. African Americans, Hispanics and Native Americans have a higher risk of developing CKD.

When CKD progresses to kidney failure—also called end-stage renal disease—the only treatment options are dialysis or kidney transplant. People who receive dialysis are hooked up to a special machine that removes waste and excess water from the blood. It effectively acts as an artificial kidney outside the body. But dialysis is time-consuming. People in kidney failure need to have dialysis several times a week to survive. A kidney transplant requires a matching donor and comes with its own risks, including that transplantation is a major surgery and there is a possibility that the kidney(s) will be rejected.

Currently, there is no drug treatment to stop the progression of CKD. Researchers at the University of Mississippi Medical Center recently published a study in the American Journal of Physiology—Renal Physiology about a new treatment option. A man-made carrier system called elastin-like polypeptide (ELP) complex can be used to deliver a drug directly to the kidney to stop CKD from getting worse.

The ELP system is a new possibility for diseases like CKD that don’t seem to respond to traditional treatments, offering hope to people with kidney failure. The technology has only been studied in animals so far, but research suggests that targeted therapy could be a new frontier for the treatment of kidney disease.

 

Megan RhoadesMegan Rhoads, BS, is a doctoral candidate in the Department of Biology at the University of Kentucky.

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s