What Animals Can Teach Humans about Muscle Maintenance

Hiding Groundhog

Credit: iStock

We all know the saying “use it or lose it.” Your muscles and nerves are no exception. When people are not active, whether it’s because of bed rest, spinal cord and nerve injury, or other reasons, two big problems arise. First, the muscles shrink by losing protein (a state called atrophy). Second, nerve cells have trouble firing electrical signals to communicate with the muscles. This combination can make it harder for people who are inactive to perform normal activities in their daily lives.

Unlike in humans, inactivity in other animals is not always such a bad thing. Certain animals in the wild need to stay inactive (dormant) to survive in their environment. During times of low food availability and harsh environmental conditions, ground squirrels, frogs, bats, turtles and bears may remain inactive. In the winter, this is called hibernation, and in the summer, it’s known as estivation. Quite often, these animals’ muscles are less active than normal or completely inactive for several months at a time. Some frogs can even survive under water during the winter without using their breathing muscles. Based on the idea of  “use it or lose it,” you might think that hibernating animals wouldn’t be able to run, jump, fly or even breathe normally after months of not using their muscles. Think again!

Understanding how animals immediately return to using their muscles and nerves normally after long stretches of dormancy is a major area of research. By learning how different animals dodge neuromuscular problems related to inactivity, scientists can figure out why human muscles and nerves are not as well-equipped. For example, hibernating animals activate genes that reduce the loss of muscle protein and use less energy during periods of inactivity to avoid atrophy. These discoveries have the potential to provide new treatment options for people who are confined to bed rest or who suffer nerve injuries that leave muscles unable to contract.

Animals have already solved many problems that plague humans, such as nerve and muscle inactivity. Research that compares animal and human function is an example of comparative physiology. Comparative physiology findings can help scientists make important discoveries that would not be possible if the cures hiding inside animals were overlooked.

Joe SantinJoe Santin, PhD, is a postdoctoral fellow at the University of Missouri-Columbia.

 

Leave a Reply