Spinal Cord Injury: Let’s Clear the Air(ways)

Human Spine Anatomy

Credit: iStock

The spinal cord is the information processing highway in animals (including humans) that have a backbone. In humans, the spinal cord contains nerve cells called motor neurons that control movement in the muscle fibers of the body, similar to the way a puppeteer controls the movements of a puppet.

About 17,000 people in the U.S. sustain new spinal cord injuries (SCI) each year, and roughly 300,000 people in the U.S. live with an SCI. Motor neuron damage in the spinal cord may lead to a variety of problems, including:

  • decreased mobility and independence;
  • loss of independent breathing;
  • injuries associated with using a wheelchair, such as pinched nerves and muscle strain;
  • partial or total inability to control the bowels and/or bladder; and
  • sexual dysfunction.

New research is addressing all of these important problems, but one area that is not as widely studied is airway clearance. Most of the time we can clear our airways ourselves through coughing and sneezing, but these actions become more difficult with SCI. Close to half of all people with SCI have damaged the motor neurons that control their diaphragm, the muscle that sits below the lungs and helps us breathe. As a result, people with SCI have an increased risk of potentially fatal airway infections such as pneumonia.

Fortunately, about 90 percent of these injuries are incomplete, meaning that some of the neurons still function. People with incomplete SCI have some sensation below the injury site and can often breathe on their own. We only need 10 to 20 percent of our diaphragm muscle to activate in order to breathe, but almost the entire muscle needs to be functional to cough and sneeze. When the motor neurons controlling the diaphragm are injured, the organ isn’t able to generate the forces necessary to clear the airways fully.

Over time, the neurons in the diaphragm that still function in an incomplete SCI may adapt to take over other jobs besides just breathing. This is called neuroplasticity. Neuroplasticity in the spinal cord is a valuable topic of research.  Researchers are looking for new ways to manipulate this process to help people with SCI learn new airway clearing methods which would likely reduce their health risks and improve their quality of life.

 

obaid-khurram-15978141Obaid Khurram is a PhD candidate in the biomedical engineering and physiology program at Mayo Clinic Graduate School of Biomedical Sciences. His research focuses on the neuromotor control of the diaphragm muscle, particularly after motor neuron loss or muscle weakness.

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s