Exploring Causes and New Treatments for Sickle Cell Disease

genemarker

Shaina Willen, MD, of Vanderbilt University Medical Center, presents her poster at the Physiological and Pathophysiological Consequences of Sickle Cell Disease conference.

Sickle cell disease (SCD) is a lifelong disorder of the red blood cells. It’s caused by a mutation in a single gene and affects about 100,000 people in the U.S. Normal red blood cells are round, a shape that helps the cells carry oxygen around the body. But red blood cells in people with SCD can become abnormally shaped like a crescent (sickle), which can cause blood cells to get stuck in blood vessels and interfere with blood flow, leading to severe pain.

Scientists and medical doctors who specialize in SCD gathered last month in Washington, D.C., for the American Physiological Society conference “Physiological and Pathophysiological Consequences of Sickle Cell Disease.” They discussed new research into the causes of the disease and new therapies that can treat and even prevent SCD-related pain episodes. Read on to learn more about their findings.

Certain patients with SCD may have a higher risk than others of developing complications—such as increased pain, stroke, eye problems and kidney disease—but finding out which patients have a higher risk is challenging. New research from Vanderbilt University Medical Center has uncovered a genetic marker that may be able to identify which patients are more likely to have these complications.

Emotional stress is known to trigger or worsen physical symptoms of disease, including some types of pain. A group of researchers from California found that stress and the anticipation of pain causes blood vessels to become narrower (vasoconstriction). In people with SCD, vasoconstriction can be dangerous because abnormally shaped (sickled) cells may be more likely to get stuck in the blood vessels and block blood flow.

A healthy digestive system is typically filled with various types of bacteria that aid in digestion. However, researchers from Howard University found that people with SCD are more likely to have higher levels of one specific bacterium, Veillonella. Veillonella link together to form a film in the digestive tract, which can attract red blood cells. When red blood cells stick to the film, it can block blood flow to the rest of the body, which causes increased pain. This discovery may help scientists find a way to rebalance gut bacteria levels and reduce symptoms.

These studies are just a few examples of the high-caliber SCD research being done. Read more highlights from this year’s conference:

Alzheimer’s drugs may improve red blood cell function and quality of life

Scientists explore ways to create red blood cells outside the body and prevent sickling

Erica Roth 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s